lunes, 16 de noviembre de 2009

¿Quién era MICHAEL FARADAY?: Breve biografía




Newington, Gran Bretaña, 1791-Londres, 1867) Científico británico. Uno de los físicos más destacados del siglo XIX, nació en el seno de una familia humilde y recibió una educación básica.

A temprana edad tuvo que empezar a trabajar, primero como repartidor de periódicos, y a los catorce años en una librería, donde tuvo la oportunidad de leer algunos artículos científicos que lo impulsaron a realizar sus primeros experimentos.

Tras asistir a algunas conferencias sobre química impartidas por sir Humphry Davy en la Royal Institution, Faraday le pidió que lo aceptara como asistente en su laboratorio.

Cuando uno de sus ayudantes dejó el puesto, Davy se lo ofreció a Faraday. Pronto se destacó en el campo de la química, con descubrimientos como el benceno y las primeras reacciones de sustitución orgánica conocidas, en las que obtuvo compuestos clorados de cadena carbonada a partir de etileno.

En esa época, el científico danés Hans Christian Oersted descubrió los campos magnéticos generados por corrientes eléctricas.

Basándose en estos experimentos, Faraday logró desarrollar el primer motor eléctrico conocido. En 1831 colaboró con Charles Wheatstone e investigó sobre fenómenos de inducción electromagnética.

Observó que un imán en movimiento a través de una bobina induce en ella una corriente eléctrica, lo cual le permitió describir matemáticamente la ley que rige la producción de electricidad por un imán.

Otra aplicación importante


1. La creación de motores eléctricos, que transforman la energía eléctrica en mecánica, diferenciándose así de los motores químicos, que transforman el poder calorífico del combustible en energía mecánica. Además, los motores eléctricos tienen mayor rendimiento.


Un motor eléctrico es una máquina eléctrica que transforma energía eléctrica en energía mecánica por medio de interacciones electromagnéticas.

Algunos de los motores eléctricos son reversibles,pueden transformar energía mecánica en energía electrica funcionando como generadores. Los motores eléctricos de tracción usados en locomotoras realizan a menudo ambas tareas, si se los equipa con frenos regenerativos.


2. Son ampliamente utilizados en instalaciones industriales, comerciales y de particulares. Pueden funcionar conectados a una red de suministro eléctrico o a baterías. Así, en automóviles se están empezando a utilizar en vehículos híbridos para aprovechar las ventajas de ambos.


PRINCIPIO DE FUNCIONAMIENTO:

A. Los motores de corriente alterna y los motores de corriente continua se basan en el mismo principio de funcionamiento, el cuál establece que si un conductor por el cual circula una corriente eléctrica se encuentra dentro de la acción de un campo magnético, éste tiende a desplazarse perpendicularmente a las líneas de acción del campo magnético.


B. El conductor tiende a funcionar como un electroimán debido a la corriente eléctrica que circula por el mismo adquiriendo de esta manera propiedades magnéticas, que provocan, debido a la interacción con los polos ubicados en el estator, el movimiento circular que se observa en el rotor del motor.


C. Partiendo del hecho de que cuando pasa corriente eléctrica por un conductor se produce un campo magnético, además si lo ponemos dentro de la acción de un campo magnético potente, el producto de la interacción de ambos campos magnéticos hace que el conductor tienda a desplazarse produciendo así la energía mecánica. Dicha energía es comunicada al exterior mediante un dispositivo llamado flecha.



ADEMAS:

En diversas circunstancias presenta muchas ventajas respecto a los motores de combustión:


-A igual potencia, su tamaño y peso son más reducidos.
-Se pueden construir de cualquier tamaño.
-Tiene un par de giro elevado y, según el tipo de motor, prácticamente constante.
-Su rendimiento es muy elevado (típicamente en torno al 75%, aumentando el mismo a medida que se incrementa la potencia de la máquina).
-Este tipo de motores no emite contaminantes, aunque en la generación de energía eléctrica de la mayoría de las redes de suministro se emiten contaminantes.

¿Para que sirve la INDUCCIÓN ELECTROMAGNÉTICA?


La mayor cantidad de energia electrica utilizada en nuestros hogares, fabricas y oficinas es la producida por generadores de corriente elterna, pues su voltaje puede aumentarse o disminuirse facilmente mediante un transformador.

La INDUCCIÓN ELECTROMAGNÉTICA nos permite generar energía mediante la manipulación de campos magnéticos, por medio de instumentos y utlizando la Le de Faraday se ha intentado aprovechar el máximo desempeño delos instrumentos.

EL EXPERIMENTO DE HERTZ



1. El montaje experimental que permitió a Heinrich Hertz en 1888 producir y detectar ondas electromagnéticas constaba de un circuito eléctrico, capaz de producir tensiones eléctricas oscilantes, y de un detector.




A. Dicho circuito, formado, en esencia, por un transformador y unas placas metálicas a modo de condensadores, se conectaba a dos esferas metálicas pulimentadas separadas entre sí por una pequeña región de aire.


B. Cuando la tensión entre las dos esferas alcanzaba su valor máximo, el aire intermedio se electrizaba y saltaba una chispa. Este proceso se repetía periódicamente generando, cada vez, según la predicción de Maxwell, un conjunto de ondas electromagnéticas.

C. Para comprobar que, en efecto, un campo electromagnético viajero se estaba propagando por el espacio, Hertz preparó un detector (o antena), conocido también como resonador, que consistía en un alambre corto doblado en forma de circunferencia, pero con una pequeña abertura intermedia. Las ondas electromagnéticas, si existían, serían detectadas porque la variación del campo magnético de la onda al atravesar el resonador daría lugar a una fuerza electromotriz inducida que provocaría una chispa entre sus extremos.



2. Con el fin de analizar el fenómeno más cómodamente, situó en su laboratorio una superficie reflectora que le permitiría confinar las ondas producidas en el espacio comprendido entre el circuito emisor y la placa.
Así, y con la ayuda del resonador, fue capaz de descubrir las características de las ondas generadas mediante su aparato emisor y de medir una longitud de onda de 66 cm. Las previsiones teóricas de Maxwell fueron confirmadas y Hertz demostró experimentalmente que las ondas electromagnéticas se reflejaban, se retractaban y sufrían interferencias al igual que las ondas luminosas. En su honor recibieron el nombre de ondas herzianas.

LAS ONDAS ELECTROMAGNETICAS




1. De las ecuaciones de Maxwell se deduce que el campo magnético y el campo eléctrico pueden estar interactuando permanentemente si uno de ellos varía con el tiempo. Así, el movimiento acelerado de un sistema de cargas produce un campo magnético variable, el cual a su vez genera campos eléctricos. Pero si éstos se producen tuvieron que partir de cero; tal variación del campo eléctrico produce a su vez un campo magnético y así repetidamente.




Esta sucesión oscilante de campos eléctricos y magnéticos viajando por el espacio se denomina onda electromagnética.


2. A partir de sus ecuaciones, Maxwell anticipó que las ondas electromagnéticas deberían propagarse en el vacío a una velocidad igual a la velocidad de la luz. Las predicciones de Maxwell fueron confirmadas experimentalmente por Hertz, quien generó y detectó este tipo de ondas, observando que su comportamiento era idéntico al de las ondas luminosas de la Óptica.


3. Desde las ondas de radio hasta los rayos gamma, pasando por las ondas luminosas, una amplia gama de ondas electromagnéticas constituyen el llamado espectro electromagnético hoy conocido.



4. Todas ellas tienen la misma naturaleza y sólo se diferencian en su frecuencia, es decir, en el número de oscilaciones que se producen en cada segundo en estos campos viajeros.


La energía de las ondas electromagnéticas es tanto mayor cuanto mayor es su frecuencia.


La luz con sus colores constituye simplemente la porción limitada del espectro electromagnético, al cual el ojo humano es sensible.

La Dinamo




1. Puede ser considerada como una modificación del alternador que permite generar corrientes continuas.


2. Para lograr que la corriente que circula por la bobina tenga un único sentido, se han de invertir las conexiones justo en el instante en el que la f.e.m. cambia de signo. Ello se consigue sustituyendo los anillos colectores por un cilindro metálico compuesto de dos mitades aisladas entre sí o delgas y conectadas cada una a un extremo de hilo conductor de la bobina.

Esa pieza se denomina conmutador porque cambia o conmuta en cada media vuelta la polaridad del generador, de tal forma que la tensión que llega a los bornes a través de las escobillas tiene siempre el mismo signo y al conectarlo al circuito exterior produce una corriente continua.


3. En las dinamos sencillas la tensión producida, aunque tiene siempre el mismo signo, no mantiene un mismo valor, sino que varía de una forma ondulada o pulsante. Sin embargo,es posible conseguir una f.e.m. prácticamente constante introduciendo un número suficiente de bobinas, dividiendo otras tantas veces el anillo colector y añadiendo los correspondientes pares de escobillas. Por este procedimiento la ondulación de la tensión, que es pronunciada en una dinamo sencilla, se reduce a un ligero rizado despreciable.



¡UN BUEN DATO!

Las bicicletas utilizan la dinamo para producir luz a partir del movimiento. Tratándose por lo general de una dinamo sencilla, puede observarse cómo a baja velocidad la intensidad luminosa aumenta y disminuye alternativamente a un ritmo que depende de la velocidad.

Cuando ésta es suficiente, la rapidez de la oscilación unida a la inercia del sistema hace que la intensidad luminosa de la lámpara se mantenga prácticamente constante. Este efecto es semejante al que se consigue al aumentar el número de bobinas, de delgas y de escobillas.

La dinamo es una máquina reversible que puede actuar como motor si se le aplica a través de las escobillas una corriente continua de intensidad conveniente. En el primer caso, funcionando como dinamo, la máquina transforma energía mecánica en energía eléctrica; en el segundo transforma energía eléctrica en movimiento.

El Alternador





1. Es el nombre que recibe el generador de corriente alterna.




2. Se basa en la producción de una fuerza electromotriz alterna mediante el fenómeno de inducción electromagnética.




3. El imán que genera el campo magnético se denomina inductor y la bobina en la que se induce la fuerza electromotriz recibe el nombre de inducido.




4 . Los dos extremos de hilo conductor del inducido se conectan a unos anillos colectores que giran junto con la bobina. Las escobillas, que suelen ser de grafito, están en contacto permanente, mediante fricción, con los anillos colectores y transmiten la tensión eléctrica producida a los bornes del generador en donde puede conectarse a un circuito exterior. Por lo general, la bobina del inducido se monta sobre un núcleo de hierro. La elevada permeabilidad magnética de este material hace que el campo magnético que atraviesa la bobina aumente; ello significa que las líneas de fuerza se aproximan entre sí aumentando el flujo magnético y, consiguientemente, el valor máximo de la f.e.m. inducida. Un efecto semejante se consigue aumentando el número de espiras del inducido.



En los grandes alternadores, el inducido está fijo y es el inductor el que se mueve, de modo que en este caso no son necesarios los anillos colectores ni las escobillas.
5. Aunque la inducción electromagnética depende del movimiento relativo entre el campo magnético y el conductor, con este procedimiento se consigue salvar algunos inconvenientes relacionados con el paso de corrientes elevadas por el colector y las escobillas.
6. Por lo general, en los alternadores comerciales el campo magnético es producido por un electroimán y no por un imán natural; en tales casos el inductor se denomina también excitador, pues es una corriente eléctrica la que excita la producción del campo magnético externo.
7. Los alternadores son los elementos esenciales en las centrales eléctricas. En ellos se genera una muy alta tensión eléctrica que se transporta a través de una red de tendidos eléctricos y es transformada en estaciones intermedias para llegar finalmente hasta los enchufes domésticos con un valor eficaz de 220 V.